Al- karkh University

Collage of Energy and Environment science

Environment science Department

Water Resources Lab

Assistant Lecturer

Mawj Ryadh Ismail

Lab. 1 Climate Elements

Climate is defined as the weather changes in a large area and for a period of time long enough to identify all its statistical features. Climatological change represents the differences in the data of the average climatic readings or among sequential climatological times.

Climate elements are including rainfall, relative humidity, temperature, evaporation, sun shine, wind speed and evapotranspiration.

Water availability of climate elements

Water availability elements including rainfall and relative humidity, where are important elements in the climate and water surplus occurred.

- **1- Rainfall (mm)** :To calculate the monthly averages of rainfall for a specified period (number of years) by dividing the total monthly values by the number of years.
- **2- Relative humidity (RH%)** : is defined the ratio between the pressures of water vapor real to pressure saturated water vapor in the air at the same temperature.

Water losses climate elements

The basic elements of water losses are temperature, evaporation, sun shine, wind speed and evapotranspiration.

1- Temperature (C°): Temperature represents an important factor in the evaporation and Evapotranspiration, which results in worming air. Temperature is one of the climate elements that have great role in the hydrological cycle .

- **2- Sunshine** (hour/day): is a solar number of hours in one day and hour brightness functions as solar influence on the temperature and relative humidity and also effects on the real evapotranspiration.
- **3- Wind Speed** (m/sec): is a great role in the amount of evaporation as the rate of evaporation increases with the excess of the wind speed.
- **4- Evaporation From Class (A) Pan** (mm): is an important element in water balance and hydrological cycle and it is one of the water loss parameters connected with other factors temperature, relative humidity, wind speed, sun shine, and area of evaporation surfaces.

For example:

To calculate the monthly averages of rainfall for a specified period (number of years) by dividing the total monthly values by the number of years.

Example 1/ calculated the monthly averages of rainfall for the period (2002-2012) and draw the chart of monthly averages values.

year	JAN.	FEB.
2002	24.1	2.4
2003	Μ	1
2004	16.2	1.8
2005	20.7	11.7
2006	13.3	28.9
2007	21.1	8.8
2008	20.4	9.9
2009	2.2	1.5
2010	1.6	26.1
2011	31.3	27.5
2012	2.4	8.4
total	153.304	128
average	15.33	11.63

Example 2	2/
-----------	----

Month	Rainfall (mm)
Oct.	3.9
Nov.	10.5
Dec.	15.2
Jan.	15.33
Feb.	11.63
Mar.	14.64
Apr.	12.14
May	3.22
Jun.	0.01
July.	0
Aug.	0
Sep.	0.29

The annual rainfall is equal to the sum of the monthly average values for a year or a specified period (number of years).

Problem 1: calculated the monthly averages of the following climate elements for the period (2007-2016).

YEAR	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
2007	12.4	2.4	0.001	8.3	0.001	0.0	0.0	0.0	0.0	0.001	0.001	12.8
2008	19.6	1.0	0.5	0.2	2.0	0.0	0.0	0.001	0.0	28.8	0.5	19.8
2009	0.001	5.8	19.5	16.8	0.2	0.0	0.0	0.0	0.0	7.4	5.1	9.5
2010	2.7	14.8	5.9	13.4	8.6	0.0	0.0	0.0	0.0	0.0	0.0	4.9
2011	21.8	19.8	4.8	21.9	1.6	0.001	0.0	0.0	0.0	0.3	0.001	1.1
2012	0.2	3.9	2.8	0.2	1.7	0.0	0.0	0.0	0.0	2.4	15.7	21.9
2013	27.6	3.2	0.001	0.001	20.0	0.0	0.0	0.0	0.0	1.9	103.3	0.1
2014	37.7	2.6	26.3	12.6	0.001	0.001	0.0	0.0	0.0	2.9	16.0	1.8
2015	4.8	5.5	3.4	1.6	6.7	0.0	0.0	0.0	0.001	38.4	46.6	32.7
2016	5.7	29.1	23.8	7.0	0.001	0.0	0.0	0.0	0.0	0.0	0.001	28.6

Rainfall (mm)

Relative humidity

Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	69	63	50	48	33	27	23	28	31	39	50	60
2008	63	55	41	36	33	26	24	27	37	52	64	61
2009	61	58	50	48	39	30	27	28	35	43	58	65
2010	57	53	44	43	31	27	22	21	27	36	41	55
2011	70	61	42	39	30	30	22	21	31	40	51	55
2012	62	52	39	31	26	21	22	25	27	41	65	60
2013	65	60	40	33	44	24	23	24	30	36	76	65
2014	79	56	51	40	28	24	23	24	31	44	57	69
2015	62	53	44	35	26	26	27	26	26	46	69	70
2016	63	58	47	35	26	22	19	22	28	37	42	64

MAX. Temperature (C°)

Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	15.6	20.9	25.5	30.1	42.3	44.4	46.1	46.1	43.2	36.7	27.3	19.4
2008	13.5	20.0	30.9	34.6	38.7	43.4	46.1	46.1	42.3	33.6	26.4	19.6
2009	17.9	22.8	25.9	30.8	38.6	44.3	44.5	45.5	40.2	35.4	24.7	21.5
2010	21.8	23.2	28.8	32.0	39.3	44.9	46.8	46.3	42.6	36.4	28.3	21.6
2011	16.4	19.3	25.2	31.3	37.6	42.9	45.4	45.1	41.0	32.3	21.7	18.2
2012	17.4	18.7	23.6	33.3	39.0	44.0	46.6	45.1	41.7	35.2	25.8	19.5
2013	18.0	22.2	27.3	32.4	35.8	42.4	44.9	44.8	40.7	32.5	23.8	17.2
2014	16.6	20.5	26.5	33.0	39.2	42.8	45.1	46.2	41.2	33.4	23.9	21.0
2015	18.3	21.4	26.3	32.0	39.9	43.3	47.1	46.5	43.8	35.9	23.6	17.3
2016	17.3	22.2	26.6	33.6	38.9	44.1	46.7	47.5	41.1	45.6	25.5	17.1

MIN. Temperature (C°)

Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	4.1	9.2	12.0	17.1	25.3	27.9	29.6	29.3	26.0	21.0	12.6	6.4
2008	3.4	7.2	15.2	19.8	23.2	28.2	27.4	27.4	27.1	20.5	12.1	6.0
2009	3.8	10.5	12.6	17.7	24.6	28.4	28.4	28.9	25.0	20.7	12.1	9.2
2010	7.9	10.3	14.6	18.9	24.5	28.6	30.7	31.7	27.6	22.1	12.9	8.1
2011	6.2	8.3	12.0	18.3	23.7	23.7	30.7	29`7	26.1	18.7	9.2	8.1
2012	5.9	7.2	10.6	19.7	25.0	28.2	30.7	29.4	25.7	21.7	14.9	9.2
2013	7.8	10.0	14.0	18.2	23.1	28.0	29.6	30.5	25.4	17.3	14.6	8.8
2014	7.5	8.2	14.8	19.7	25.0	28.1	30.3	31.0	27.1	20.9	12.0	9.6
2015	6.9	9.5	12.7	17.1	25.1	28.0	31.4	30.4	29	23.6	13.1	7.1
2016	6.9	10.0	14.3	19.8	24.6	29.2	31.1	32.1	26.5	20.7	11.5	6.4

Problem 2: calculated and draw the annual averages of rain fall and evaporation for the last 6 years

Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	1.0	1.8	1.9	2.6	2.0	2.7	2.3	2.1	2.4	1.2	0.9	0.9
2008	1.1	2.1	1.7	2.2	2.0	3.6	2.3	1.6	1.5	1.6	0.9	1.7
2009	1.4	1.7	2.3	1.8	1.7	2.0	2.5	1.5	1.8	1.4	1.0	0.9
2010	1.6	1.8	2.0	1.6	1.8	2.3	2.6	1.6	1.5	1.5	0.6	1.2
2011	1.1	1.7	2.3	2.2	1.9	3.1	2.2	2.1	1.2	1.6	1.3	1.4
2012	1.4	2.3	2.1	2.0	1.9	2.3	2.0	1.8	1.5	1.2	1.1	1.6
2013	2.0	1.9	2.3	2.1	2.3	3.1	3.0	2.1	1.7	1.9	1.6	1.9
2014	1.9	2.0	2.0	2.1	2.4	2.4	2.5	2.3	1.7	1.7	1.5	1.3
2015	1.7	1.7	1.6	1.9	2.1	1.9	2.1	1.5	1.1	0.7	1.2	1.2
2016	1.1	1.4	2.2	1.4	2.0	1.9	2.3	1.3	1.9	1.1	1.8	0.9

Wind Speed (m/sec)

Sunshine (hour/day)

Year	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEP	OCT	NOV	DEC
2007	5.9	7.1	8.0	6.7	9.2	11.7	11.9	11.2	10.5	8.5	8.0	6.8
2008	4.8	6.5	7.8	7.4	8.8	9.4	10.9	10.5	8.4	7.6	7.9	6.5
2009	6.9	6.0	7.1	7.7	8.2	9.1	10.2	10.2	9.8	7.3	5.5	5.1
2010	6.5	6.0	6.5	7.0	7.5	9.7	10.3	10.4	8.8	7.8	7.9	5.9
2011	5.2	6.0	8.0	6.7	8.3	9.7	10.3	10.5	9.7	8.3	7.1	6.8
2012	6.4	6.6	7.9	7.9	6.2	10.4	10.6	10.5	10.1	5.8	5.5	6.1
2013	5.8	7.5	7.3	8.8	7.5	10.4	10.9	10.7	9.8	8.5	5.0	6.0
2014	8.3	9.4	7.9	8.4	9.2	9.7	10.6	10.6	10.3	7.6	6.5	6.4
2015	6.0	6.8	8.4	8.9	Μ	9.5	9.8	9.6	7.2	8.3	6.5	6.0
2016	5.8	6.4	8.4	8.4	9.7	11.9	11.3	10.3	10.6	9.2	8.0	5.9

YEAR	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
2007	66.3	110.1	219.6	271.6	407.0	546.4	Μ	М	415.1	277.9	148.8	103.1
2008	69.1	129.9	257.4	310.6	408.1	525.3	551.4	494.3	357.1	237.0	111.0	94.2
2009	82.4	132.0	190.4	219.5	295.6	369.0	425.1	453.3	340.8	239.1	137.2	58.5
2010	92.5	109.7	217.3	340.7	411.5	510.3	579.0	480.7	387.1	277.4	144.5	117.1
2011	74.5	91.2	180.7	204.8	280.0	403.0	429.6	409.7	296.9	192.5	94.6	66.8
2012	70.1	106.4	154.9	239.0	332.3	390.7	385.2	402.1	294.7	176.1	81.6	52.7
2013	55.6	88.8	181.9	216.8	246.5	391.3	435.9	375.7	276.9	190.5	67.3	48.0
2014	38.2	83.1	123.7	198.8	286.7	346.4	422.0	384.2	296.9	157.8	77.9	48.5
2015	62.3	82.1	124.0	197.9	305.6	376.7	455.5	377.3	293.4	181.2	95.5	47.2
2016	61.7	84.7	126.3	210.1	324.2	362.1	400.6	408.6	286.3	175.9	101.1	53.7

Evaporation (mm)

Lab. 2 Classification of the climate

There are several classification for climate to find and determine the type of the climate. The wet period in Iraq was determined according to rainfall, it's confined for months from October to May (Kettaneh and Gangopadhyaya, 1974), (Ali *et al*, 2000), three of these classifications will be used to find the type of climate in area as follows:

A- Mather (1974) classification:

Climate had been classified in to three classes according to climate index of Mather (1974), based on the relationship between rainfall and evapotranspiration. The climate Index is given as:

Im =] (P / PE) -1[* 100....(1)

Where:

Im = Climate index

P = Rainfall

PE = Potential evapotranspiration.

When (Im) negative value they represent dry climate, and when (Im) positive value represents a humid climate.

 Table 1: Classification of the climate according to (Mather, 1974)

Claimant Type	Range of Im
Dry-sub humid	0.0 to -33.3
Semi-Arid	-33.3 to -66.7
Arid	-66.7 to -100

For example:

- What is the type of climate of the following data: P= 89.85 mm, PE = 1077.18 mm.

- Solution :

Im =] (P / PE) -1[* 100]

Im = -91.7 the climate type is arid in the area.

B- Brown and Cocheme (1973) classification:

According to (Brown and Cocheme, 1973) classification the humidity index (H.I) depended on the ratio between rainfall and potential evapotranspiration comparable to the following equation

H.I = P/PEc -----(2)

H.I: Humidity index.

P: Annual rainfall (mm).

PE: Potential evapotranspiration (mm).

Table 2:Classification of the climate according to (Brown and Cocheme,1973).

Climat	Range HI						
Hur	HI > 1						
Most	Most						
Moist to Dry	Not humid	2HI< 1< 4HI					
Dry	Not numia	4HI< 1< 10HI					
V. Dry		10HI < 1					

For example:

- What is the type of climate of the following data: P= 17.5 mm, PEc = 5.06 mm in Jan. month.
- Solution :

H.I = P/PEc

H.I = 3.46 the climate type is humid in the Jan.

C- Al-Kubaisi (2004) Classification:

The classification suggested by Al-Kubaisi (2004) to find the climate type by using the annual dryness treatment (AI) depending on mean annual rainfall and temperature according to the following equation:

AI.1 = $1.0 \times P / (11.525 \times t)$ -----(3)

AI.2 =
$$2\sqrt{p/t}$$
 -----(4)

Where:

AI: Annual dryness index.

P: Mean annual rainfall (mm).

t: Mean annual temperature (C°).

The value of the (AI.1) represents the classification of the dominated climate, while the value (AI.2) represents a modification of the latter classification and as it is shown in Table 3.

Type 1	Evaluation	Type 2	Evaluation
		AI.2 ≥ 4	Humid
		2.5 <al2 4<="" <="" td=""><td>Humid to</td></al2>	Humid to
	Humid to	2.5 _11.2 < 1	Moist
AI.1 > 1.0	Moist	$1.85 \le AI.2 < 2.5$	Moist
			Moist to
		$1.5 \le AI.2 < 1.85$	sub arid
AI. 1 < 1.0	Sub arid to	$1.0 \le AI.2 < 1.5$	Sub arid
	Arid	AI.2 < 1.0	Arid

Table 3: Classification of climate according to (Al-Kubaisi, 2004)

For example:

- AI.1 = 0.32 it means that the dominated climate in the area is sub arid to arid.
- AI- 2 = 0.79 it means that the climate in the area is arid.

Months	P (mm)	PEc (mm)	Temp. (C°)	
Oct.	3.9	67.67	26.5	
Nov.	10.5	17.56	17.05	
Dec.	15.2	6.61	12.4	
Jan.	16.34	4.02	10.3	
Feb.	13.51	6.75	12.33	
Mar.	14.64	21.34	17.5	
Apr.	12.11	50.18	23.7	
May	3.22	109.92	30.1	
Jun.	0.01	176.87	34.3	
Jul.	0	293.58	36.2	
Aug.	0	196.58	35.4	
Sep.	0.29	126.10	31.4	
Total				

Homework 1: what is the classification of climate using the following data?

Ground Water Flow Nets

Groundwater flow occurs on a variety of scales. Local – Shallow flow occurs over short times and distances, whereas, deep long distance flow occurs over time scales of centuries.

The rate at which groundwater moves through the saturated zone depends

on the permeability of the rock and the hydraulic head. The hydraulic head is defined as the difference in elevation between two points on the water table.

The hydraulic gradient is the hydraulic head divided by the distance between two points on the water table.

The velocity, V, is of groundwater flow is given by:

V = K (h2-h1) / L(1)

where K is the hydraulic conductivity, which is a measure of the permeability of the material through which the water is following.

If we multiply this expression by the area, A, through which the water is moving, then we get the discharge (Q) which is Darcy's Law.

Q = A K (h2 - h1) / L....(2)

It simply states that discharge is proportional to the hydraulic gradient times the permeability.

Discharge is higher if the hydraulic gradient is high and/or of the permeability is high.

Note that like stream discharge, Q has units of volume per time

(i.e. cubic meters per second).

College of Energy and Environment science

Water Resources / Lab. 3

Dept. of Environment science

(1)

College of Energy and Environment science

Water Resources / Lab. 3

Dept. of Environment science

Homework 1: Draw flow net map of the following wells, defining the flow directions.

Well No.	Elevation (m) (1)	Depth to groundwater (m) (Water Table) (2)	Water head on s.l. (m) (3)	Well No.	Elevation (m) (1)	Depth to groundwater (m) (2)	Water head on s.l. (m) (3)
W1	190	17	183	W15	179	9	
W2	191	3		W16	181	16	
W3	156	18		W17	162	4	
W4	156	11		W18	220	13	
W5	174	16		W19	205	8	
W6	178	1		W20	132	6	
W7	188	7		W21	135	8	
W8	144	9		W22	149	5	
W9	158	5		W23	171	6	
W10	149	10		W24	184	9	
W11	131	9		W25	190	9	
W12	141	9		W26	210	15	
W13	163	13		W27	216	13	
W14	171	12		W28	177	17	

College of Energy and Environment science

Water Resources / Lab. 3

Dept. of Environment science

Dept. of Envi

College of Energy and Environment science

Water Resources / Lab. 3

Dept. of Environment science

The quality of water is a consequence of the natural physical and chemical properties of the water. The main physical properties include electrical conductivity (EC), total dissolved solids (TDS), hydrogen ion concentration (pH), Total hardness (TH), temperature, color and odor while the main chemical properties include the major ions Na, Mg, Ca and K as cations and Cl, SO₄, HCO₃, NO₃ as anions.

Q/ how to classify the water according to TDS?

The total dissolved solids (TDS) is the term applied to material residue left in a vessel after evaporation of a water sample and subsequent drying of the residue. The concentration of the dissolved ions within natural water depends on the type of soil and rocks that are in contact with it and the period of tangency process and climate. The TDS represents a total summation of ionic concentrations of cations and anions. It is measured by the (ppm) or (mg/L) units. There are three classifications of water (Altoviski, 1962; Drever, 1997 and Todd, 2007).

Water Class	Altoviski, 1962	Drever (1997)	Todd(2007)
Fresh Water	0 - 1000	< 1000	10 - 1000
Slightly-brackish Water	1000 - 3000	1000 - 2000	
Brackish Water	3000 - 10000	2000- 20000	1000 - 10000
Salty (Saline) Water	10000 - 50000	35000	10000 - 100000
Brine Water	> 50000	> 35000	> 100000

For example:

Q/The TDS values of water samples is given in Table1, wright the average of TDS and what is the classifications of water according the (Drever, 1997) classification?

Water samples	W1	W2	W3	average
TDS (ppm)	2350	1514	2204	2022.7

Solution:

	$\sum TDS values$	_ w1+w2+w3	2350 +1514 +2204
average =	number of samples	3	3

= 2022.7 ppm

College of Energy and Environment science The water is classified as brackish water in w1, w3 and as Slightly-brackish Dept. of Environment science Water in w2

classifications of water according to EC

Electrical Conductivity (EC) is the ability of water to conduct an electric current or its ability to contact (1 cm^3) of water to electrical current at (25 C°) . It is measured in the unit of (μ S/cm) and also named micro Siemens per cm.

The EC depends on water temperature, where an increase in water temperature of one degree (C°) causes an increase in electrical conductivity by (2%). Also the EC increases with the increase of the total dissolved salts (TDS).

The water type can be determent by the relationship between EC and mineralization degree of water according to (Detay, 1997) classification.

EC μS/cm	Mineralization
<100	Very Weakly Mineralized water
100-200	Weakly Mineralized water
200-400	Slightly Mineralized water
400-600	Moderately Mineralized water
600-1000	Highly Mineralized water

College of Energy and Environment science						
Dept. of Enviror	>1000	Excessively Mineralized water				

For example:

Q/ The EC values of water samples is given in Table1, what is the classifications of water according the (Detay, 1997) classification?

Water samples	S1	S2	S 3
EC (µS/cm)	350	614	1600

Solution:

The water type is classified as Slightly Mineralized water in S1 and as Highly Mineralized water in S2 and as Excessively Mineralized water in S3.

classifications of water according to TH Total hardness (TH) mainly reflects water contents of calcium and magnesium ions and it is expressed by its equivalent from calcium carbonate according to the following equation:

TH = 2.497 Ca + 4.115 Mg ----- (1)

Where TH, Ca, Mg are all measured in ppm. Hardness is an important criterion for determining the usability of water for domestic, drinking and many industrial uses

The classification of water hardness according to (Boyd,2000 and Todd, 2007) classification.

Type of water	Total Hardness (ppm)			
	Boyd (2000)	Todd (200'		
Soft	0 - 50	0 - 60		
Moderate Hard	50 - 150	60 - 120		
Hard	150 - 300	120 - 180		
Very hard	> 300	> 180		

For example:

Q/ what is the classifications of water hardness if you know The TH value of water sample = 200 ppm?

Solution:

The water type according to Boyd is classified as hard water and according to Todd is classified as very hard water.

Water Resources / Lab. 5

Lab. 5 Types of water

The types of water are connected with the chemical and physical properties which change relatively with respect time and place. These changes are slow in groundwater comparing with surface water.

The chemical properties include the major ions Na, Mg, Ca and K as cations and Cl, SO4, HCO3, NO3 as anions.

There are many methods to classification of water from the hydrochemical aspect such as (Piper, 1944; Sulin, 1946; Kurolov, 1968; Schoeller, 1972; Collins, 1975; Schoeller and Sulin, 1981; and Chadha, 1999). All these classifications depend on the main cations and anions concentrations by unit equivalent weight of ion (epm).

Cations	Charg	M.W.
Ca	+2	40
Mg	+2	24
Na	+1	23
K	+1	39
Anions		
Cl	-1	35.5
SO4	-2	96
HCO3	-1	63

epm = ion concentration in ppm x charg / m.w.

Water Resources / Lab. 5

Example 1/ calculated the epm and epm% for the sample?

Sample p	Ca	Mg	Na	K	Cl	SO_4	HCO ₃
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
S1	125	82	470	14	641	512	264

Solution /	epm	epm %
Ca = 125*2 /40	6.25	6.25/33.86 *100= 18.45
Mg = 82*2/24	6.83	20.17
Na = 470*1 /23	20.43	60.33
K = 14*1/39	<u>0.35</u>	1.03
	$\sum = 33.86$	
Cl = 641*1/35.5	18.05	54.86
$SO_4 = 512*2 / 96$	10.66	32.40
$HCO_3 = 264*1 / 63$	<u>4.19</u>	12.7
	$\Sigma = 32.9$	

1- Hydrochemical Formula (Kurolov formula)

This formula depends on the ratio of the main ions, (cations and anions) expressed by (epm %) that are arranged in descending order which have more than (15%) ratio of availability as the following formula :

TDS (mg /l) (Anions epm% in decreasing order) (Cations epm% in decreasing order) pH1

Example 2/ what is the Hydrochemical formula and water type of the following sample ?

Sampla	Ca	Mg	Na	K	Cl	SO_4	HCO ₃	TDS	PH
Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(mg /l)	
S1	125	82	470	14	641	512	264	2137	7.31

Solution /

	Hydrochemical formula	water type	
2137	Cl (54.86)SO4(32.40) Na(60.33) Mg(20.17)Ca(18.45)	7.31	NaCl

College of Energy and Environment science

Dept. of Environment science

Water Resources / Lab. 6

Homework 1: What is the Hydrochemical formula and water type of the following samples ?

well No.	PH	TDS ppm	Ca ⁺² ppm	Mg ⁺² ppm	Na ⁺ ppm	K ⁺ ppm	Cl ⁻ ppm	SO ₄ ppm	HCO ₃ ppm
W2	7.21	1514	60	31	280	13	205	525	72
W3	7.11	2204	71	35	347	12	280	500	210
W6	7.22	2226	126	83	135	12	242	546	66
W14	7.21	2100	125	91	385	14	530	569	265

Lab. 6 Classification of water

1- Hydrochemical formula

2- Piper Diagram

Piper (1944) proposed adiagram that permits the classification of water. The Piper diagram is consists of two trilinear plots and a diamond plot. These diagrams depend on dissolved contents in natural water which represent cations and anions by unit (epm%).

Piper diagram is divided in to seven types as shown in Figure 1 as follows: \Box

Normal earth Alkaline water:

- **a-** with prevailing bicarbonate
- **b-** with prevailing bicarbonate and sulfate or chloride
- **c-** with prevailing sulfate or chloride
- □ Earth Alkaline water with increase portion of alkalis:
 - **d-** with prevailing bicarbonate
 - e- with prevailing sulfate and chloride
 - □ Alkaline water:
 - f- with prevailing bicarbonate
 - g- with prevailing sulfate and chloride

College of Energy and Environment science

Dept. of Environment science

Figure 1: Piper diagram

Example 1/ what is the classification of water depend on Piper diagram of the following sample ?

Sample	Ca	Mg	Na	K	Cl	SO_4	HCO ₃
Bampie	ppm	ppm	ppm	ppm	ppm	ppm	ppm
S1	18.45	19.96	60.52	1.05	54.67	32.24	13.08

Water Resources / Lab. 6

Solution /

The sample is located in (g) type. This means the type of water is Alkaline water with prevailing sulfate and chloride" respectively.

3- Schoeller Classification

This classification uses semi logarithmic graph to plot the concentrations of the anions and cations. The concentrations are plotted in epm % units.

Sample	Ту	ре	Family	Group
	Anion	Cation	- uy	Group
W1	rCl>SO ₄ >HCO ₃	rNa>Mg>Ca>K	Na -Cl	Cl

Water suitability for different purposes

1- Water suitability for human drinking purposes

Water suitability depends on several parameters (major and minor elements, inorganic, organic chemicals and biological constituents). For the purpose of evaluating the suitability of water for human drinking, Iraqi standard (IQS, 2009) and World Health Organization Standard (WHO, 2007) were used to determine its suitability as drinking water.

Water Resources / Lab. 6

Parameter	IQS (2009)	WHO (2007)
EC(µs/cm)	1500	1530
TDS(ppm)	1000	1000
pH (ppm)	6.5-8.5	6.5-8.5
T.H(mg/l)	500	_
Ca(ppm)	150	75
Mg(ppm)	100	125
Na (ppm)	200	200
K (ppm)	_	12
Cl (ppm)	350	250
SO ₄ (ppm)	400	250
NO ₃ (ppm)	50	50
Zn (ppm)	3	3
Mn (ppm)	0.1	0.1
Pb (ppm)	0.01	0.01
Ni (ppm)	0.02	0.02
Cd (ppm)	0.003	0.003
Cu (ppm)	1	1
Co (ppm)	_	0.5
Fe (ppm)	0.3	0.3

2- Water suitability for livestock purposes

Water specifications for livestock consumption according to Altoviski (1962).

Water Resources / Lab. 6

Elements& Parameters (ppm)	Very good Water	Good Water	Acceptable Water for use	Can be used	High limits
Na ⁺	800	1500	2000	2500	4000
Ca ⁺²	350	700	800	900	1000
Mg^{+2}	150	350	500	600	700
CL-	900	2000	3000	4000	6000
SO ₄ ⁻²	1000	2500	3000	4000	6000
T.D.S	3000	5000	7000	10000	15000
Т.Н	1500	3200	4000	4700	54000

3- Water suitability for industrial purposes

Water quality standard for industrial uses according to Hem (1985).

		Chemic and J	cal pulp paper	ubber		Iried, ts and oles			ning	lic t ure
Parameters	Textiles	Unbleac hed	Bleache d	Wood chemicals	Synthetic ru	Petroleum products	Canned, d frozen frui vegetab	Soft-drinks bottling	leather tanı	Hydraul cement manufact
Ca ²		20	20	100	80	75		100		
Mg+ ²		12	12	50	36	30				
CL-		200	200	500		300	250	500	250	250
ŠO4	0			100			250	500	250	250
HCO ₃ ⁻	0			250						
NO ₃ ⁻	0			5			10			
Cu	0.01							500		
Zn										
pН	2.5 –	6 - 10	6 - 10	6.5-	6.5 –	6 - 9	6.5 – 8.5		6 - 8	6.5 -
	10.5			8.0	8.3					8.5
TDS	100			1000		1000	500			600
TH	25	100	100	900	350	350	250		Soft	

College of Energy and Environment science

Dept. of Environment science

Water Resources / Lab. 6

4- Water suitability for building purposes

Water quality standard for building purposes according to Altoviski (1962).

Ions	Permissible Limit	Average concentrations
Na ⁺	1160	
Ca ²⁺	437	
Mg ²⁺	271	
Cŀ	2187	
SO ₄ =	1460	
HCO3 ⁻	350	

5- Water suitability for agriculture and irrigation purposes.

Todd classification (2007) for the tolerance of crops by relative salt concentrations for agriculture.

Crop Division	Low Salt Tolerance crops EC (µS /cm)	Medium Salt Tolerance crops Ec (µS /cm)	High Salt Tolerance crops Ec (µS /cm)
Fruit Crops	(0 – 3000) Limon, Peach, Pear Apricot, Orange, Apple.	(3000 – 4000) Cantaloupe, Olive, Figs, Pomegranate.	(4000 – 10000) Date palm
Vegetable Crops	(3000 – 4000) Green beans, Celery, Radish.	(4000 – 10000) Cucumber, Peas, Onion, Carrot,Potatoes, Lettuce, Cauliflower, Tomato.	(10000 – 120000) Spinach, beets
Field Crops	(4000 – 6000) Field beans	(6000 – 10000) Sunflower, Corn, Rice, Flax, Sorghum	(10000 – 16000) Cotton, Sugar beet, Barley (grains)

Water Resources / Lab. 6

Homework 1: What is the Hydrochemical classification and water type of the following samples ?

well	Ca^{+2}	Mg^{+2}	Na ⁺	K ⁺	Cl-	SO_4	HCO ₃
No.	ppm	ppm	ppm	ppm	ppm	ppm	ppm
W2	60	31	280	13	205	525	72
W3	71	35	347	12	280	500	210
W6	126	83	135	12	242	546	66
W14	125	91	385	14	530	569	265

Homework 2: What is the water suitability for different purposes of the following samples above?